某企业生产A,B两种产品,生产每吨产品所需的劳动力和煤、电耗如下表:
已知生产每吨A产品的利润是5万元,生产每吨B产品的利润是10万元,现因条件限制,该企业仅有劳动力300个,煤360 t,并且供电局只能供电200 kW,试问该企业生产A,B两种产品各多少吨,才能获得最大利润?
(本小题满分12分)
设函数f(x)=x3+ax2+bx(x>0)的图象与直线y=4相切于M(1,4).
(Ⅰ)求f(x)=x3+ax2+bx在区间(0,4]上的最大值与最小值;
(Ⅱ)设存在两个不等正数s,t(s<t),当x∈[s,t]时,函数f(x)=x3+ax2+bx的值域是[ks,kt],求正数k的取值范围。
(本小题满分12分)
已知动圆P过点并且与圆
相外切,动圆圆心P的轨迹为W,过点N的直线
与轨迹W交于A、B两点。
(Ⅰ)求轨迹W的方程;(Ⅱ)若,求直线
的方程;
(Ⅲ)对于的任意一确定的位置,在直线
上是否存在一点Q,使得
,并说明理由。
(本小题满分12分)
已知数列满足
(t>0,n≥2),且
,n≥2时,
>0.其中
是数列
的前n项和.
(Ⅰ)求数列的通项公式;
(Ⅱ)若对于,不等式
恒成立,求t 的取值范围.
(本小题满分12分)
已知平行六面体的底面为正方形,
分别为上、下底面的中心,且
在底面
的射影是
。
(Ⅰ)求证:平面
平面
;
(Ⅱ)若点分别在棱上
上,且
,问点
在何处时,
;
(Ⅲ)若,求二面角
的大小(用反三角函数表示)。
(本小题满分12分)
桌面上有三颗均匀的骰子(6个面上分别标有数字1,2,3,4,5,6)。重复下面的操作,直到桌面上没有骰子:将骰子全部抛掷,然后去掉那些朝上点数为奇数的骰子。记操作三次之内(含三次)去掉的骰子的颗数为X.
(Ⅰ)求;
(Ⅱ)求X的分布列及期望.