(本小题满分14分)矩形纸片ABCD的边AB=6,AD=10,点E、F分别在边AB和BC上(不含端点). 现将纸片的右下角沿EF翻折,使得顶点B翻折后的新位置B1恰好落在边AD上. 设,EF=l,l关于t的函数为
.
试求:(1)函数f(t)的定义域;
(2)函数f(t)的最小值.
为抗击金融风暴,某系统决定对所属企业给予低息贷款的扶持,该系统制定了评分标准,并根据标准对企业进行评估,然后依据评估得分将这些企业分别定为优秀、良好、合格、不合格四个等级,并根据等级分配相应的低息贷款数额,为了更好地掌握贷款总额,该系统随机抽查了所属的部分企业.一下图表给出了有关数据(将频率看做概率)
(1)任抽一家所属企业,求抽到的企业等级是优秀或良好的概率;
(2)对照标准,企业进行了整改.整改后,如果优秀企业数量不变,不合格企业、合格企业、良好企业的数量成等差数列.要使所属企业获得贷款的平均值(即数学期望)不低于410万元,那么整改后不合格企业占企业总数百分比的最大值是多少?
解不等式
在直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,已知直线
的极坐标方程为
,曲线
的参数方程为
(
为对数),求曲线
截直线
所得的弦长.
已知矩阵
对应的线性变换把点
变成点
,求矩阵
的特征值以及属于没个特征值的一个特征向量.
已知函数 (
为实常数)。
(Ⅰ)当时,求函数
的单调区间;
(Ⅱ)若函数在区间
上无极值,求
的取值范围;
(Ⅲ)已知且
,求证:
.