为了解甲、乙两厂产品的质量,从两厂生产的产品中分别随机抽取各9件样品,测量产品中某种元素的含量(单位:毫克).如图是测量数据的茎叶图,但是乙厂记录中有一个数字模糊,无法确认,假设这个数字具有随机性,并在图中以表示,规定:当产品中的此种元素含量不小于18毫克时,该产品为优等品.
(Ⅰ)若甲、乙两厂产品中该种元素含量的平均值相同,求的值;
(Ⅱ)求乙厂该种元素含量的平均值超过甲厂平均值的概率;
(Ⅲ)当时,利用简单随机抽样的方法,分别在甲、乙两厂该种元素含量超过
(毫克)的数据中个抽取一个做代表,设抽取的两个数据中超过
(毫克)的个数为
,求
的分布列和数学期望.
(本小题满分13分)
等差数列中,首项
,公差
,前n项和为
,已知数列
成等比数列,其中
,
,
.
(Ⅰ)求数列,
的通项公式;
(Ⅱ)令,数列
的前n项和为
.若存在一个最小正整数M,使得当
时,
(
)恒成立,试求出这个最小正整数M的值.
(本小题满分13分)
函数.
(Ⅰ)若,
在
处的切线相互垂直,求这两个切线方程;
(Ⅱ)若单调递增,求
的范围.
(本小题满分12分)
已知数列的各项均为正数,且前
项之和
满足
,且
,
,
成等比数列.
(1)求数列的通项公式;
(2)若数列的前
项和为
,求
.
(本小题满分13分)
如图,在六面体中,平面
∥平面
,
平面
,
,
,
∥
,且
,
.
(1)求证:平面平面
;
(2)求证:∥平面
;
(3)求三棱锥的体积.
(本小题满分12分)
某学校共有教职工900人,分成三个批次进行继续教育培训,在三个批次中男、女教职工人数如下表所示. 已知在全体教职工中随机抽取1名,抽到第二批次中女教职工的概率是0.16 .
第一批次 |
第二批次 |
第三批次 |
|
女教职工 |
196 |
x |
y |
男教职工 |
204 |
156 |
z |
(1)求的值;
(2)现用分层抽样的方法在全体教职工中抽取54名做培训效果的调查, 问应在第三批次中抽取教职工多少名?
(3)已知,求第三批次中女教职工比男教职工多的概率.