如图,已知双曲线C1:-y2=1,曲线C2:|y|=|x|+1.P是平面内一点.若存在过点P的直线与C1,C2都有共同点,则称P为“C1-C2型点”.(1)在正确证明C1的左焦点是“C1-C2型点”时,要使用一条过该焦点的直线,试写出一条这样的直线的方程(不要求验证).(2)设直线y=kx与C2有公共点,求证|k|>1,进而证明原点不是“C1-C2型点”.(3)求证:圆x2+y2=内的点都不是“C1-C2型点”.
知x、y、z均为实数, (1)若x+y+z=1,求证:++≤3; (2)若x+2y+3z=6,求x2+y2+z2的最小值.
已知x1,x2,…,xn都是正数,且x1+x2+…+xn=1,求证:++…+≥n2.
若a,b∈R,求证:≤+.
设点O为坐标原点,直线l:(参数t∈R)与曲线C:(参数∈R)交于A,B两点. (1)求直线l与曲线C的直角坐标方程; (2)求证:OA⊥OB.
求圆心为A(2,0),且经过极点的圆的极坐标方程.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号