游客
题文

如图,已知双曲线C1-y2=1,曲线C2:|y|=|x|+1.P是平面内一点.若存在过点P的直线与C1,C2都有共同点,则称P为“C1-C2型点”.

(1)在正确证明C1的左焦点是“C1-C2型点”时,要使用一条过该焦点的直线,试写出一条这样的直线的方程(不要求验证).
(2)设直线y=kx与C2有公共点,求证|k|>1,进而证明原点不是“C1-C2型点”.
(3)求证:圆x2+y2=内的点都不是“C1-C2型点”.

科目 数学   题型 解答题   难度 困难
知识点: 参数方程
登录免费查看答案和解析
相关试题

已知二面角A-BC-D等于30°,△ABC是等边三角形,其外接圆半径为a,点D在平面ABC上射影是△ABC的中心O,求SDBC.

等边ABC的A∈平面α,B、C到面α的距离分别为2a、a,且AB=BC=AC=b.
(1)求面ABC与α所成二面角的大小;
(2)若B、C到α的距离分别为3a、a呢?

已知直角梯形ABCD中,AD∥BC,AB⊥AD,∠C=45°,AD=AB=2,把梯形沿BD折起成60°的二面角C′-BD-A.求: (1)C′到平面ADB的距离;
(2)AC′与BD所成的角.








(1)当直线的倾斜角为时,求弦的长;
(2)当点为弦的中点时,求直线的方程

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号