(·长春模拟)对甲、乙两名自行车赛手在相同条件下进行了6次测试,测得他们的最大速度(m/s)的数据如下表:
甲 |
27 |
38 |
30 |
37 |
35 |
31 |
乙 |
33 |
29 |
38 |
34 |
28 |
36 |
(1)画出茎叶图.
(2)分别求出甲、乙两名自行车赛手最大速度(m/s)数据的平均数、方差,并判断选谁参加比赛更合适?
如图,四棱锥P-ABCD中,AD∥BC,∠ADC=,
PC⊥平面ABCD,点E为AB中点。AC⊥DE,
其中AD=1,PC=2,CD=;
(1)求异面直线DE与PB所成角的余弦值;
(2)求直线PC与平面PDE所成角的余弦值。
已知二项式的展开式中各项系数和为64.
(Ⅰ)求; (Ⅱ)求展开式中的常数项
在中,角A,B,C所对的边分别是a,b,c,且a>b>c.设向量
="(cosB,sinB),"
为单位向量。
(1)求角B的大小,
(2)若ABC的面积
已知函数,
.
(1)当时,求函数
的最大值;
(2)如果对于区间上的任意一个
,都有
成立,求
的取值范围.
已知函数(其中
)的图象与x轴的交点中,相邻两个交点之间的距离为
,且图象上一个最低点为
.
(Ⅰ)求的解析式;(Ⅱ)当
,求
的值域