(本小题共12分)已知焦点在轴的椭圆
的左、右焦点分别为
,直线
过右焦点
,和椭圆交于
两点,且满足
,直线
的斜率为
.
(1)求椭圆C的标准方程;
(2)设F为椭圆C的右焦点,T为直线上纵坐标不为0的任意一点,过F作TF的垂线交椭圆C于点P,Q.
(ⅰ)若OT平分线段PQ(其中O为坐标原点),求的值;
(ⅱ)在(ⅰ)的条件下,当最小时,求点T的坐标.
(本小题共12分)如图,四棱锥P - ABCD的底面是边长为1的正方形,PA⊥底面ABCD,E、F分别为AB、PC的中点.
(1)若PA = 1,求证:EF⊥平面PCD;
(2)若PA = 2,试问在线段EF上是否存在点Q,使得二面角 Q - AP - D的余弦值为?若存在,确定点Q的位置;若不存在,请说明理由.
(本小题共12分)某校从参加高一年级期末考试的学生中抽出60名学生,将其数学成绩(均为整数)分成六段,
后画出如下部分频率分布直方图.观察图形的信息,回答下列问题:
(1)求第四小组的频率,补全这个频率分布直方图;并估计该校学生的数学成绩的中位数.
(2)从数学成绩是70分以上(包括70分)的学生中选两人,求他们在同一分数段的概率.
(3)假设从全市参加高一年级期末考试的学生中,任意抽取4个学生,设这四个学生中数学成绩为80分以上(包括80分)的人数为X,(以该校学生的成绩的频率估计概率),求X的分布列和数学期望.
(本小题共12分)设函数f(x)=sinxcos(x+)+
,x∈R.
(1)设,
求
的值..
(2)△ABC的内角A、B、C所对边的长分别为a、b、c,若a、b、c成等比数列;且a+c=6,,求△ABC的面积.
(本小题满分13分)已知为常数
,在
处的切线方程为
.
(Ⅰ)求的单调区间;
(Ⅱ)若任意实数,使得对任意的
上恒有
成立,求实数
的取值范围;
(Ⅲ)求证:对任意正整数,有
.