(1)已知函数,求函数的最大值;
(2)设均为正数,证明:
①若,则;
②若,则
一汽车厂生产A,B,C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如表所示(单位辆),若按A,B,C三类用分层抽样的方法在这个月生产的轿车中抽取50辆,则A类轿车有10辆
轿车A |
轿车B |
轿车C |
|
舒适型 |
100 |
150 |
z |
标准型 |
300 |
450 |
600 |
(1)求下表中z的值;
(2)用随机抽样的方法从B类舒适型轿车中抽取8辆,经检测它们的得分如下:94,86,92,96,87,93,90,82把这8辆轿车的得分看作一个总体,从中任取一个得分数记这8辆轿车的得分的平均数为
,定义事件
{
,且函数
没有零点},求事件
发生的概率
在所对的边分别为
且
.
(1)求;
(2)若,求
面积的最大值.
已知函数.
(1)若,求证:当
时,
;
(2)若在区间
上单调递增,试求
的取值范围;
(3)求证:.
已知中心在原点的椭圆C:
的一个焦点为F1(0,3),M(x,4)(x>0)为椭圆C上一点,△MOF1的面积为
.
(1) 求椭圆C的方程;
(2) 是否存在平行于OM的直线l,使得直线l与椭圆C相交于A,B两点,且以线段AB为直径的圆恰好经过原点?若存在,求出直线l的方程;若不存在,说明理由.
如图,四棱锥中,底面
为直角梯形,
∥
,
,
平面
,且
,
为
的中点
(1) 证明:面面
(2) 求面与面
夹角的余弦值.