某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的体积为
立方米,且
.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为
千元.设该容器的建造费用为
千元.
(1)写出
关于
的函数表达式,并求该函数的定义域;
(2)求该容器的建造费用最小时的
.
已知双曲线的焦点与椭圆
的焦点重合,且该椭圆的长轴长为
,
是椭圆上的的动点.
(1)求椭圆标准方程;
(2)设动点满足:
,直线
与
的斜率之积为
,求证:存在定点
,
使得为定值,并求出
的坐标;
(3)若在第一象限,且点
关于原点对称,点
在
轴的射影为
,连接
并延长交椭圆于
点,求证:以
为直径的圆经过点
.
如图,四棱锥中,
,底面
为梯形,
,
,且
,
.
(1)求证:;
(2)求二面角的余弦值.
设表示数列
的前
项和.
(1)若为公比为
的等比数列,写出并推导
的计算公式;
(2)若,
,求证:
<1.
某校高一年级名学生参加数学竞赛,成绩全部在
分至
分之间,现将成绩分成以下
段:
,据此绘制了如图所示的频率分布直方图.
(1)求成绩在区间的频率;
(2)从成绩大于等于分的学生中随机选
名学生,其中成绩在
内的学生人数为
,求
的分布列与均值.
设锐角三角形ABC的内角A,B,C的对边分别为,且
.
(1)求角的大小;
(2)若,求
的面积及
.