某网站针对“2014年法定节假日调休安排”展开的问卷调查,提出了A、B、C三种放假方案,调查结果如下:
|
支持A方案 |
支持B方案 |
支持C方案 |
35岁以下 |
200 |
400 |
800 |
35岁以上(含35岁) |
100 |
100 |
400 |
(1)在所有参与调查的人中,用分层抽样的方法抽取n个人,已知从“支持A方案”的人中抽取了6人,求n的值;
(2)在“支持B方案”的人中,用分层抽样的方法抽取5人看作一个总体,从这5人中任意选取2人,求恰好有1人在35岁以上(含35岁)的概率.
如图,四边形ABCD内接于⊙,
是⊙
的直径,
于点
,
平分
.
(Ⅰ)证明:是⊙
的切线
(Ⅱ)如果,求
.
设,函数
,函数
,
.
(Ⅰ)当时,写出函数
零点个数,并说明理由;
(Ⅱ)若曲线与曲线
分别位于直线
的两侧,求
的所有可能取值.
如图,、
为椭圆
的左、右焦点,
、
是椭圆的两个顶点,椭圆的离心率
,
.若
在椭圆
上,则点
称为点
的一个“好点”.直线
与椭圆交于
、
两点,
、
两点的“好点”分别为
、
,已知以
为直径的圆经过坐标原点.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)的面积是否为定值?若为定值,试求出该定值;若不为定值,请说明理由.
如图,已知三棱柱的侧棱与底面垂直,且
,
,
,
,点
、
、
分别为
、
、
的中点.
(1)求证:平面
;
(2)求证:面
;
某车间将10名技工平均分成甲、乙两组加工某种零件,在单位时间内每个技工加工的合格零件数的统计数据的茎叶图如图所示.已知两组技工在单位时间内加工的合格零件平均数都为.
(1)分别求出,
的值;
(2)分别求出甲、乙两组技工在单位时间内加工的合格零件的方差和
,并由此分析两组技工的加工水平;
(3)质检部门从该车间甲、乙两组技工中各随机抽取一名技工,对其加工的零件进行检测,若两人加工的合格零件个数之和大于,则称该车间“质量合格”,求该车间“质量合格”的概率.
(注:方差,其中
为数据
的平均数).