直三棱柱的底面为等腰直角三角形,
,
,
分别是
的中点。求异面直线
和
所成角的大小。
某电视台组织部分记者,用“10分制”随机调查某社区居民的幸福指数.现从调查人群中随机抽取16名,如图所示的茎叶图记录了他们的幸福指数的得分(以小数点前的一位数字为茎,小数点后的一位数字为叶):
(1)指出这组数据的众数和中位数;
(2)若幸福指数不低于9.5分,则称该人的幸福指数为“极幸福”.求从这16人中随机选取3人,至多有1人是“极幸福”的概率;
(3)以这16人的样本数据来估计整个社区的总体数据,若从该社区(人数很多)任选3人,记表示抽到“极幸福”的人数,求
的分布列及数学期望.
已知向量,函数
.
(1)求函数的最小正周期及单调递增区间;
(2)已知中,角
的对边分别为
,若
,
,
求的面积.
已知是公差不等于0的等差数列,
是等比数列
,且
.
(1)若,比较
与
的大小关系;
(2)若.(ⅰ)判断
是否为数列
中的某一项,并请说明理由;
(ⅱ)若是数列
中的某一项,写出正整数
的集合(不必说明理由).
已知椭圆经过点
,一个焦点为
.
(1)求椭圆的方程;
(2)若直线与
轴交于点
,与椭圆
交于
两点,线段
的垂直平分线与
轴交于点
,求
的取值范围.
设函数,
,
,记
.
(1)求曲线在
处的切线方程;
(2)求函数的单调区间;
(3)当时,若函数
没有零点,求
的取值范围.