为了了解青少年视力情况,某市从高考体检中随机抽取16名学生的视力进行调查,经医生用对数视力表检查得到每个学生的视力状况的茎叶图(以小数点前的一位数字为茎,小数点后的一位数字为叶)如下:
(1)若视力测试结果不低丁5.0,则称为“好视力”,求校医从这16人中随机选取3人,至多有1人是“好视力”的概率;
(2)以这16人的样本数据来估计该市所有参加高考学生的的总体数据,若从该市参加高考的学生中任选3人,记表示抽到“好视力”学生的人数,求
的分布列及数学期望.
设命题:关于x的函数
为增函数;命题
:不等式
对一切正实数均成立. (1)若命题
为真命题,求实数
的取值范围;
(2)命题“或
”为真命题,且“
且
”为假命题,求实数
的取值范围.
若点在直线
上,求经过点
,且与直线
平行的直线的方程。
如右图,在平面直角坐标系中,已知“葫芦”曲线
由圆弧
与圆弧
相接而成,两相接点
均在直线
上.圆弧
所在圆的圆心是坐标原点
,半径为
;圆弧
过点
.
(I)求圆弧的方程;
(II)已知直线:
与“葫芦”曲线
交于
两点.当
时,求直线
的方程.
设过点的直线与椭圆
相交于A,B两个不同的点,且
.记O为坐标原点.求
的面积取得最大值时的椭圆方程.
如图,几何体中,四边形
为平行四边形,且面
面
,
,且
,
为
中点.
(Ⅰ)证明:平面
;
(Ⅱ)求直线与底面
所成角的正弦值.