如图,在正方形ABCD中,AB=5,P是BC边上任意一点,E是BC延长
线上一点,连接AP,作PF⊥AP,使PF=PA,连接CF,AF,AF交CD边于点G,连接PG.
(1)求证:∠GCF=∠FCE;
(2)判断线段PG,PB与DG之间的数量关系,并证明你的结论;
(3)若BP=2,在直线AB上是否存在一点M,使四边形DMPF是平行四边形,若存在,求出BM的长度,若不存在,说明理由.
在平面直角坐标系 中,把与 轴交点相同的二次函数图象称为“共根抛物线”.如图,抛物线 的顶点为 ,交 轴于点 、 (点 在点 左侧),交 轴于点 .抛物线 与 是“共根抛物线”,其顶点为 .
(1)若抛物线 经过点 ,求 对应的函数表达式;
(2)当 的值最大时,求点 的坐标;
(3)设点 是抛物线 上的一个动点,且位于其对称轴的右侧.若 与 相似,求其“共根抛物线” 的顶点 的坐标.
筒车是我国古代利用水力驱动的灌溉工具,唐代陈廷章在《水轮赋)中写道:“水能利物,轮乃曲成”.如图,半径为 的筒车 按逆时针方向每分钟转 圈,筒车与水面分别交于点 、 ,筒车的轴心 距离水面的高度 长为 ,筒车上均匀分布着若干个盛水筒.若以某个盛水筒 刚浮出水面时开始计算时间.
(1)经过多长时间,盛水筒 首次到达最高点?
(2)浮出水面3.4秒后,盛水筒 距离水面多高?
(3)若接水槽 所在直线是 的切线,且与直线 交于点 , .求盛水筒 从最高点开始,至少经过多长时间恰好在直线 上.
(参考数据: , ,
如图,在平面直角坐标系 中,反比例函数 的图象经过点 ,点 在 轴的负半轴上, 交 轴于点 , 为线段 的中点.
(1) ,点 的坐标为 ;
(2)若点 为线段 上的一个动点,过点 作 轴,交反比例函数图象于点 ,求 面积的最大值.
甲、乙两公司全体员工踊跃参与“携手防疫,共渡难关”捐款活动,甲公司共捐款100000元,乙公司共捐款140000元.下面是甲、乙两公司员工的一段对话:
(1)甲、乙两公司各有多少人?
(2)现甲、乙两公司共同使用这笔捐款购买 、 两种防疫物资, 种防疫物资每箱15000元, 种防疫物资每箱12000元.若购买 种防疫物资不少于10箱,并恰好将捐款用完,有几种购买方案?请设计出来(注 、 两种防疫物资均需购买,并按整箱配送).
如图,在四边形 中, ,对角线 的垂直平分线与边 、 分别相交于点 、 .
(1)求证:四边形 是菱形;
(2)若 , ,求菱形 的周长.