已知抛物线的方程为,直线的方程为,点关于直线的对称点在抛物线上.(1)求抛物线的方程;(2)已知,点是抛物线的焦点,是抛物线上的动点,求的最小值及此时点的坐标;(3)设点、是抛物线上的动点,点是抛物线与轴正半轴交点,是以为直角顶点的直角三角形.试探究直线是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由.
如图,在直三棱柱(侧棱垂直于底面的三棱柱)中,,分别是棱上的点(点不同于点),且为的中点. 求证:(1)平面平面; (2)直线平面.
定义在上的函数满足,且.若是上的减函数,求实数的取值范围.
已知且,若函数在区间的最大值为10,求的值.
根据下列条件,求直线的方程: (1)已知直线过点P(-2,2)且与两坐标轴所围成的三角形面积为1; (2)过两直线3x-2y+1=0和x+3y+4=0的交点,且垂直于直线x+3y+4=0.
是否存在a、b、c使得等式1·22+2·32+…+n(n+1)2=(an2+bn+c) 对于一切正整数n都成立?证明你的结论.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号