已知曲线的直角坐标方程为
. 以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系. P是曲线
上一点,
,
,将点P绕点O逆时针旋转角
后得到点Q,
,点M的轨迹是曲线
.
(1)求曲线的极坐标方程;
(2)求的取值范围.
如图,三棱锥中,
,
,
,点
在平面
内的射影恰为
的重心
,M为侧棱
上一动点.
(1)求证:平面平面
;
(2)当M为的中点时,求直线
与平面
所成角的正弦值.
如图甲,是边长为6的等边三角形,
分别为
靠近
的三等分点,点
为边
边的中点,线段
交线段
于点
.将
沿
翻折,使平面
平面
,连接
,形成如图乙所示的几何体.
(1)求证:平面
(2)求四棱锥的体积.
如图,在△ABC中,∠ABC=90°,∠A=30。,斜边AC上的中线BD=2,现沿BD将△BCD折起成三棱锥C-ABD,已知G是线段BD的中点,E,F分别是CG,AG的中点.
(1)求证:EF//平面ABC;
(2)三棱锥C—ABD中,若棱AC=,求三棱锥A一BCD的体积.
如图1,在直角梯形中,
,
.把
沿
折起到
的位置,使得
点在平面
上的正投影
恰好落在线段
上,如图2所示,点
分别为棱
的中点.
(1)求证:平面平面
;
(2)求证:平面
;
(3)若,求四棱锥
的体积.
如图,AB是圆O的直径,点C是弧AB的中点,点V是圆O所在平面外一点,是AC的中点,已知
,
.
(1)求证:OD//平面VBC;
(2)求证:AC⊥平面VOD;
(3)求棱锥的体积.