游客
题文

f ( x ) = x 3 + a x 2 + b x + 1 的导数 f ` ( x ) 满足 f ` ( 1 ) = 2 a , f ` ( 2 ) = - b ,其中常数 a , b R
(Ⅰ)求曲线 y = f ( x ) 在点 ( 1 , f ( 1 ) ) 处的切线方程.
(Ⅱ)设 g ( x ) = f ` ( x ) e - x .求函数 g ( x ) 的极值.

科目 数学   题型 解答题   难度 较难
知识点: 组合几何
登录免费查看答案和解析
相关试题

中华人民共和国《道路交通安全法》中将饮酒后违法驾驶机动车的行为分成两个档次:“酒后驾车”和“醉酒驾车”,其检测标准是驾驶人员血液中的酒精含量Q(简称血酒含量,单位是毫克/100毫升),当20≤Q≤80时,为酒后驾车;当Q>80时,为醉酒驾车.某市公安局交通管理部门于2011年2月的某天晚上8点至11点在市区设点进行一次拦查行动,共依法查出了60名饮酒后违法驾驶机动车者,如图为这60名驾驶员抽血检测后所得结果画出的频率分布直方图(其中Q≥140的人数计入120≤Q<140人数之内).
(1)求此次拦查中醉酒驾车的人数;
(2)从违法驾车的60人中按酒后驾车和醉酒驾车利用分层抽样抽取8人做样本进行研究,再从抽取的8人中任取3人,求3人中含有醉酒驾车人数的分布列和期望.

如图,四棱锥的底面是正方形,⊥平面,,点ESD上的点,且.
(1)求证:对任意的,都有ACBE
(2)若二面角C-AE-D的大小为,求的值.

中,分别是角A,B,C的对边,且.
(1)求角的值;
(2)已知函数,将的图像向左平移个单位长度后得到函数的图像,求的单调增区间.

已知函数,(其中常数
(1)当时,求的极大值;
(2)试讨论在区间上的单调性;
(3)当时,曲线上总存在相异两点,使得曲线在点的切线互相平行,求的取值范围.

已知椭圆的离心率为,短轴的一个端点到右焦点的距离为2,
(1)试求椭圆的方程;
(2)若斜率为的直线与椭圆交于两点,点为椭圆上一点,记直线的斜率为,直线的斜率为,试问:是否为定值?请证明你的结论.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号