已知函数
(1)讨论函数在定义域内的极值点的个数;
(2)若函数在
=1处取得极值,对任意的
∈(0,+∞),
≥
恒成立,求实数b的取值范围;
(3)当>
>
时,求证:
已知点(
N
)顺次为直线
上的点,点
(
N
)顺次为
轴上的点,其中
,对任意的
N
,点
、
、
构成以
为顶点的等腰三角形.(Ⅰ)证明:数列
是等差数列;(Ⅱ)求证:对任意的
N
,
是常数,并求数列
的通项公式; (Ⅲ)在上述等腰三角形
中是否存在直角三角形,若存在,求出此时
的值;若不存在,请说明理由.
已知椭圆
,直线
与椭圆交于
、
两点,
是线段
的中点,连接
并延长交椭圆于点
.
设直线
与直线
的斜率分别为
、
,且
,求椭圆的离心率.若直线
经过椭圆的右焦点
,且四边形
是平行四边形,求直线
斜率的取值范围.
(本小题满分12分)已知函数
,
,
的最小值恰好是方程
的三个根,其中
.
(1)求证:
;
(2)设
是函数
的两个极值点.若
,
求函数
的解析式.
(本小题满分12分)如图,在四棱锥P-ABCD中,
底面ABCD为直角梯形,且AB//CD,AB⊥AD,AD=CD=2AB=2.
侧面为正三角形,且平面PAD⊥平面ABCD.网
(1)若M为PC上一动点,则M在何位置时,PC⊥平面MDB?并加已证明;(2)若G为的重心,求二面角G-BD-C大小.
某地区试行高考考试改革:在高三学年中举行5次统一测试,学生如果通过其中2次测试即可获得足够学分升上大学继续学习,不用参加其余的测试,而每个学生最多也只能参加5次测试. 假设某学生每次通过测试的概率都是
,每次测试通过与否互相独立. 规定:若前4次都没有通过测试,则第5次不能参加测试.
(1)求该学生恰好经过4次测试考上大学的概率;
(2)求该学生考上大学的概率.