已知是等比数列
的前
项和,
,
,
成等差数列,且
.
(1)求数列的通项公式;
(2)是否存在正整数,使得
?若存在,求出符合条件的所有
的集合;
若不存在,说明理由.
已知函数,
①求函数的单调区间。
②若函数的图象在点(2,
)处的切线的倾斜角为
,对任意的
,函数
在区间
上总不是单调函数,求m取值范围
③求证:
已知抛物线C: 的焦点为F,点P(2,0),O为坐标原点,过P的直线
与抛物线C相交于A,B两点,若向量
在向量
上的投影为n,且
,求直线
的方程。
在平面直角坐标系中,已知某点,直线
.求证:点P到直线
的距离
已知数列是公差为1的等差数列,
是公比为2的等比数列,
分别是数列
和
前n项和,且
①分别求,
的通项公式。
②若,求n的范围
③令,求数列
的前n项和
。
六名学生需依次进行身体体能和外语两个项目的训练及考核。每个项目只有一次补考机会,补考不合格者不能进入下一个项目的训练(即淘汰),若每个学生身体体能考核合格的概率是,外语考核合格的概率是
,假设每一次考试是否合格互不影响。
①求某个学生不被淘汰的概率。
②求6名学生至多有两名被淘汰的概率
③假设某学生不放弃每一次考核的机会,用表示其参加补考的次数,求随机变量
的分布列和数学期望。