某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为 A , B , C , D四个等级.加工业务约定:对于 A级品、 B级品、 C级品,厂家每件分别收取加工费90元,50元,20元;对于D级品,厂家每件要赔偿原料损失费50元.该厂有甲、乙两个分厂可承接加工业务.甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:
甲分厂产品等级的频数分布表
等级 |
A |
B |
C |
D |
频数 |
40 |
20 |
20 |
20 |
乙分厂产品等级的频数分布表
等级 |
A |
B |
C |
D |
频数 |
28 |
17 |
34 |
21 |
(1)分别估计甲、乙两分厂加工出来的一件产品为A级品的概率;
(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务?
已知函数 .
(1)当 时,求不等式 的解集;
(2)若 ,求 a的取值范围.
已知曲线C1,C2的参数方程分别为C1:(θ为参数),C2:
(t为参数).
(1)将C1,C2的参数方程化为普通方程;
(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系.设C1,C2的交点为P,求圆心在极轴上,且经过极点和P的圆的极坐标方程.
已知函数f(x)=2lnx+1.
(1)若f(x)≤2x+c,求c的取值范围;
(2)设a>0时,讨论函数g(x)= 的单调性.
如图,已知三棱柱 ABC- A 1 B 1 C 1的底面是正三角形,侧面 BB 1 C 1 C是矩形, M, N分别为 BC, B 1 C 1的中点, P为 AM上一点.过 B 1 C 1和 P的平面交 AB于 E,交 AC于 F.
(1)证明: AA 1// MN,且平面 A 1 AMN⊥平面 EB 1 C 1 F;
(2)设 O为△ A 1 B 1 C 1的中心,若 AO= AB=6, AO//平面 EB 1 C 1 F,且∠ MPN= ,求四棱锥 B- EB 1 C 1 F的体积.