地为绿化环境,移栽了银杏树棵,梧桐树
棵.它们移栽后的成活率分别
为、
,每棵树是否存活互不影响,在移栽的
棵树中:
(1)求银杏树都成活且梧桐树成活棵的概率;
(2)求成活的棵树的分布列与期望.
对400个某种型号的电子元件进行寿命追踪调查,其频率分布表如下表:
寿命(h) |
频率 |
500600 |
0.10 |
600700 |
0.15 |
700800 |
0.40 |
800900 |
0.20 |
9001000 |
0.15 |
合计 |
1 |
(I)在下图中补齐频率分布直方图;
(II)估计元件寿命在500800h以内的概率。
在直角坐标系xoy中,直线的参数方程为
(t为参数)。在极坐标系(与直角坐标系xoy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为
。
(Ⅰ)求圆C的直角坐标方程;
(Ⅱ)设圆C与直线交于点A、B,若点P的坐标为
,求|PA|+|PB|。
已知函数.
(Ⅰ)求的最小值;
(Ⅱ)若对所有都有
,求实数
的取值范围.
某商场准备在五一劳动节期间举行促销活动,根据市场调查,该商场决定从3种服装商品、2种家电商品、4种日用商品中,选出3种商品进行促销活动.
(Ⅰ)试求选出的3种商品中至少有一种日用商品的概率;
(Ⅱ)商场对选出的A商品采用的促销方案是有奖销售,即在该商品现价的基础上将价格提高90元,同时允许顾客有3次抽奖的机会,若中奖,则每次中奖都可获得一定数额的奖金.假设顾客每次抽奖时获奖与否是等可能的,请问:商场应将中奖奖金数额最高定为多少元,才能使促销方案对自己有利?
如图,四棱锥P-ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.
(Ⅰ) 证明:PA⊥BD;
(Ⅱ) 若PD=AD,求二面角A-PB-C的余弦值。