某中学的数学测试中设置了“数学与逻辑”和“阅读与表达”两个内容,成绩分为A、B、C、D、E五个等级。某班考生两科的考试成绩的数据统计如图所示,其中“数学与逻辑”科目的成绩等级为B的考生有10人
(1)求该班考生中“阅读与表达”科目中成绩等级为A的人数;
(2)若等级A、B、C、D、E分别对应5分、4分、3分、2分、1分,该考场共10人得分大于7分,其中2人10分,2人9分,6人8分,从这10人中随机抽取2人,求2人成绩之和的分布列。
(本小题满分10分)选修4-4:坐标系与参数方程
在极坐标系中,已知圆与直线
为参数)相切,求实数
的值。
(本小题满分10分)选修4—1;几何证明选讲
如图,在△ABC 中,以AB为直径的⊙O交AC于D,点E为BC的中点,连接DE、AE, AE交⊙O于点F
(Ⅰ) 求证:是⊙O的切线;
(Ⅱ) 若⊙O的直径为2,求的值.
(本小题满分12分)已知的图像在点
处的切线与直线
平行.
(1)求a,b满足的关系式;
(2)若上恒成立,求a的取值范围;
(本小题满分12分)如图,在△ABC中,|AB|=|AC|=,|BC|=2,以B、C为焦点的椭圆恰好过AC的中点P.
(Ⅰ)求椭圆的标准方程;
(Ⅱ) 过椭圆的右顶点作直线l与圆E:(x-1)2+y2=2相交于M、N两点,试探究点M、N能将圆E分割成弧长比值为1∶3的两段弧吗?若能,求出直线l的方程;若不能,请说明理由.
如图,在四棱锥P—ABCD中,PA⊥平面ABCD,四边形ABCD为正方形,PA=AB=4, G为PD中点,E点在AB上,平面PEC⊥平面PDC.
(Ⅰ)求证:AG⊥平面PCD;
(Ⅱ)求证:AG∥平面PEC;
(Ⅲ)求点G到平面PEC的距离.