某书商为提高某套丛书的销量,准备举办一场展销会.据市场调查,当每套丛书售价定为x元时,销售量可达到15—0.1x万套.现出版社为配合该书商的活动,决定进行价格改革,将每套丛书的供货价格分成固定价格和浮动价格两部分,其中固定价格为30元,浮动价格(单位:元)与销售量(单位:万套)成反比,比例系数为10.假设不计其他成本,即销售每套丛书的利润=售价-供货价格.问:
(1)每套丛书售价定为100元时,书商能获得的总利润是多少万元?
(2)每套丛书售价定为多少元时,单套丛书的利润最大?
|
已知向量,求
△ABC中,内角A,B,C的对边分别为a,b,c,已知,
.
(1)求的值;
(2)设求
的值。
数列{an}是首项为23,公差为整数的等差数列,且第六项为正,第七项为负.
(1)求数列的公差.
(2)求前n项和Sn的最大值.
(3)当Sn>0时,求n的最大值.
已知,
,当
为何值时,
(1)与
垂直?
(2)与
平行?平行时它们是同向还是反向?
已知函数在同一半周期内的图象过点
,其中
为坐标原点,
为函数
图象的最高点,
为函数
的图象与
轴的正半轴的交点.
(1)求证:为等腰直角三角形.
(2)将绕原点
按逆时针方向旋转角
,得到
,若点
恰好落在曲线
上(如图所示),试判断点
是否也落在曲线
上,并说明理由