游客
题文

已知函数f(x)=xlnx-x2.
(1)当a=1时,函数y=f(x)有几个极值点?
(2)是否存在实数a,使函数f(x)=xlnx-x2有两个极值?若存在,求实数a的取值范围;若不存在,请说明理由.

科目 数学   题型 解答题   难度 较难
登录免费查看答案和解析
相关试题

(本题共12分)对于每项均是正整数的数列,定义变换将数列变换成数列.对于每项均是非负整数的数列,定义变换将数列各项从大到小排列,然后去掉所有为零的项,得到数列.又定义.设是每项均为正整数的有穷数列,令
(Ⅰ)如果数列,写出数列
(Ⅱ)对于每项均是正整数的有穷数列,证明
(Ⅲ)证明:对于任意给定的每项均为正整数的有穷数列,存在正整数,当时,

(本题共12分)已知椭圆的中心在坐标原点,右焦点为是椭圆的左、右顶点,是椭圆上异于的动点,且面积的最大值为

(Ⅰ)求椭圆的方程;
(Ⅱ)直线与直线交于点.试判断以为直径的圆与直线的位置关系,并证明你的结论.

(本题共12分)设函数,若对均有恒成立.
(Ⅰ)求实数的值及函数的单调递减区间;
(Ⅱ)在中,分别为内角所对的边,且,求的内切圆半径的最大值.

(本题共13分)如图,在多面体中,底面是边长为的菱形,,四边形是矩形,平面⊥平面的中点.

(Ⅰ)求证:⊥平面
(Ⅱ)求二面角的大小.

(本题共13分)某射击比赛,开始时在距目标米处射击,如果命中记分,且停止射击;若第一次射击未命中,可以进行第二次射击,但目标已在米处,这时命中记分,且停止射击;若第二次仍未命中还可以进行第三次射击,但此时目标已在米处,若第三次命中则记分,并停止射击;若三次都未命中,则记分.已知射手的命中率与目标距离(米)的关系为,且在100米处击中目标的概率为,假设各次射击相互独立.
(Ⅰ)求这名射手在射击比赛中命中目标的概率;
(Ⅱ)求这名射手在比赛中得分的分布列与数学期望

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号