已知各项均不相等的等差数列{an}的前n项和为Sn,若S3=15,且a3+1为a1+1和a7+1的等比中项.
(1)求数列{an}的通项公式与前n项和Sn;
(2)设Tn为数列{}的前n项和,问是否存在常数m,使Tn=m[
+
],若存在,求m的值;若不存在,说明理由.
已知函数.
(1)求的最小正周期及单调递减区间;
(2)若在区间
上的最大值与最小值的和为
,求
的值.
在直角坐标平面内,以坐标原点为极点,
轴的非负半轴为极轴建立极坐标系.已知点
的极坐标为
,曲线
的参数方程为
(
为参数).
(1)求直线的直角坐标方程;
(2)求点到曲线
上的点的距离的最小值.
记函数的定义域为集合
,函数
的定义域为集合
.
(1)求;
(2)若,且
,求实数
的取值范围.
已知数列的奇数项是首项为1的等差数列,偶数项是首项为2的等比数列.数列
前
项和为
,且满足
(1)求数列的通项公式;
(2)求数列前
项和
;
(3)在数列中,是否存在连续的三项
,按原来的顺序成等差数列?若存在,求出所有满足条件的正整数
的值;若不存在,说明理由
已知函数(a,b均为正常数).
(1)求证:函数在
内至少有一个零点;
(2)设函数在处有极值,
①对于一切,不等式
恒成立,求
的取值范围;
②若函数f(x)在区间上是单调增函数,求实数
的取值范围.