将圆x2+y2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C. (1)写出C的参数方程; (2)设直线l:2x+y-2=0与C的交点为P1,P2,以坐标原点为极点,x轴正半轴为极坐标建立极坐标系,求过线段P1P2的中点且与l垂直的直线的极坐标方程.
正四棱锥中,,点M,N分别在PA,BD上,且. (Ⅰ)求异面直线MN与AD所成角; (Ⅱ)求证:∥平面PBC; (Ⅲ)求MN与平面PAB所成角的正弦值.
已知圆C的半径为2,圆心在x轴的正半轴上,直线与圆C相切. (I)求圆C的方程; (II)过点Q(0,-3)的直线与圆C交于不同的两点A、B,当时,求△AOB的面积.
已知向量,函数 (Ⅰ)求函数在上的值域; (Ⅱ)当时,若与共线,求的值.
已知数列中,,n≥2时,求通项公式.
已知向量与互相垂直,其中 (1)求和的值 (2)若,,求的值
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号