游客
题文

如图1,四边形 A B C D 为矩形, P D 平面 A B C D A B = 1 , B C = P C = 2 ,作如图2折叠,折痕 E F / / D C .其中点 E , F 分别在线段 P D , P C 上,沿 E F 折叠后点 P 在线段 A D 上的点记为 M ,并且 M F C F .

(1)证明: C F 平面 M D F
(2)求三棱锥 M - C D E 的体积.

科目 数学   题型 解答题   难度 中等
知识点: 空间向量的应用 表面展开图
登录免费查看答案和解析
相关试题

已知数列中,对一切自然数,都有且首项为

(1)用表示,并求数列的通项公式;
(2)若表示数列的前项之和,则

在△ABC中,分别为角A、B、C的对边,="3," △ABC
的面积为6,D为△ABC内任一点,点D到三边距离之和为d。
⑴求角A的正弦值; ⑵求边b、c; ⑶求d的取值范围

已知函数为常数,).
(Ⅰ)当时,求函数处的切线方程;
(Ⅱ)当处取得极值时,若关于的方程在[0,2]上恰有两个不相等的实数根,求实数的取值范围;
(Ⅲ)若对任意的,总存在,使不等式成立,求实数的取值范围.

以下是有关椭圆的两个问题:
问题1:已知椭圆,定点A(1, 1),F是右焦点,P是椭圆上动点,则有最小值;
问题2:已知椭圆,定点A (2, 1),F是右焦点,
P是椭圆上动点,有最小值;

(Ⅰ)求问题1中的最小值,并求此时P点坐标;
(Ⅱ)试类比问题1,猜想问题2中的值,并谈谈你作此猜想的依据.

如图,底面为菱形的四棱锥P-ABCD中,∠ABC=60°,AC="1," PA="2," PB=PD=,点M是PD的中点.

(Ⅰ)证明:PA⊥平面ABCD;
(Ⅱ)若AN为PD边的高线,求二面角M-AC-N的余弦值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号