已知是等差数列,其中
,前四项和
.
(1)求数列的通项公式an;
(2)令,①求数列
的前
项之和
②是不是数列
中的项,如果是,求出它是第几项;如果不是,请说明理由。
设不等式组,所表示的平面区域
的整点个数为
,则
.
(本小题共14分)
已知椭圆和圆
:
,过椭圆上一点
引圆
的两条切线,切点分别为
.
(Ⅰ)(ⅰ)若圆过椭圆的两个焦点,求椭圆的离心率
;
(ⅱ)若椭圆上存在点,使得
,求椭圆离心率
的取值范围;
(Ⅱ)设直线与
轴、
轴分别交于点
,
,求证:
为定值.
(本小题满分14分)对于定义在区间D上的函数,若存在闭区间
和常数
,使得对任意
,都有
,且对任意
∈D,当
时,
恒成立,则称函数
为区间D上的“平底型”函数.
(Ⅰ)判断函数和
是否为R上的“平底
型”函数?并说明理由;
(Ⅱ)设是(Ⅰ)中的“平底型”函数,k为非零常数,若不等式
对一切
R恒成立,求实数
的取值范围;
(Ⅲ)若函数是区间
上的“平底型”函数,求
和
的值.
.
(本小题满分14分)已知椭圆:
的离心率为
,过坐标原点
且斜率为
的直线
与
相交于
、
,
.
⑴求、
的值;
⑵若动圆与椭圆
和直线
都没有公共点,试求
的取值范围.
(本小题满分14分)
已知数列中,
且
(
且
).
(1)证明:数列为
等差数列;
(2)求数列的前
项和
.