已知双曲线的中心在原点,焦点F1,F2在坐标轴上,离心率为,且过点(4,-
).
(1)求双曲线方程;
(2)若点M(3,m)在双曲线上,求证:·
=0;
(3)求△F1MF2的面积.
(本小题满分14分)已知数列{}中,
(n≥2,
),
(1)若,数列
满足
(
),求证数列{
}是等差数列;
(2)若,求数列{
}中的最大项与最小项,并说明理由;
(3)若,试证明:
.
(本小题满分13分)已知函数满足
(其中
为
在点
处的导数,
为常数).(1)求函数
的单调区间;(2)若方程
有且只有两个不等的实数根,求常数
;(3)在(2)的条件下,若
,求函数
的图象与
轴围成的封闭图形的面积.
(本小题满分13分)已知动圆过定点,且与直线
相切.
(1)求动圆的圆心轨迹的方程;(2) 是否存在直线
,使
过点(0,1),并与轨迹
交于
两点,且满足
?若存在,求出直线
的方程;若不存在,说明理由。
(本小题满分12分)下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗Y(吨标准煤)的几组对照数据
x |
3 |
4 |
5 |
6 |
y |
2.5 |
3 |
4 |
4.5 |
(1)请画出上表数据的散点图; (2)请根据上表提供的数据,用最小二乘法求出Y关于x的线性回归方程Y=bx+a;(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?
(参考数值:32.5+43+54+64.5=66.5)
(本题满分分)已知
,
(Ⅰ)求的值;(Ⅱ)求
的值.