游客
题文

如图,等边三角形OAB的边长为8,且其三个顶点均在抛物线E:x2=2py(p>0)上.

(1)求抛物线E的方程;
(2)设动直线l与抛物线E相切于点P,与直线y=-1相交于点Q,证明以PQ为直径的圆恒过y轴上某定点.

科目 数学   题型 解答题   难度 中等
知识点: 参数方程
登录免费查看答案和解析
相关试题

若f(x)是定义在(0,+∞)上的增函数,且对一切x,y>0,满足f=f(x)-f(y).
(1)求f(1)的值;
(2)若f(6)=1,解不等式f(x+3)-f<2.

设a是实数,f(x)=a-(x∈R).
(1)证明:f(x)是增函数;
(2)试确定a的值,使f(x)为奇函数.

设函数f(x)=ax2+(b-8)x-a-ab的两个零点分别是-3和2.
(1)求f(x)的解析式;
(2)当函数f(x)的定义域是[0,1]时,求函数f(x)的值域.

(1)求函数的定义域。
(2)求函数的值域。

已知集合A={x|2-a≤x≤2+a},B={x|x≤1,或x≥4}.
(1)当a=3时,求A∩B;
(2)若A∩B=∅,求实数a的取值范围.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号