游客
题文

已知点C(1,0),点A、B是⊙O:x2+y2=9上任意两个不同的点,且满足·=0,设P为弦AB的中点.

(1)求点P的轨迹T的方程;
(2)试探究在轨迹T上是否存在这样的点:它到直线x=-1的距离恰好等于到点C的距离?若存在,求出这样的点的坐标;若不存在,说明理由.

科目 数学   题型 解答题   难度 较难
知识点: 参数方程
登录免费查看答案和解析
相关试题

(本小题满分14分)
如图,已知椭圆的离心率为,短轴的一个端点到右焦点的距离为.设直线与椭圆相交于两点,点关于轴对称点为
(1)求椭圆的方程;
(2)若以线段为直径的圆过坐标原点,求直线的方程;
(3)试问:当变化时,直线轴是否交于一个定点?若是,请写出定点的坐标,并证明你的结论;若不是,请说明理由.

(本小题满分12分)
已知数列
(1)当为何值时,数列可以构成公差不为零的等差数列,并求其通项公式;
(2)若,令,求数列的前项和

(本小题满分12分)
已知是边长为2的等边三角形,平面上一动点.
(1)若的中点,求直线与平面所成的角的正弦值;
(2)在运动过程中,是否有可能使平面?请说明理由.

(本小题满分12分)
的两个顶点坐标分别是,顶点A满足.
(1)求顶点A的轨迹方程;
(2)若点在(1)轨迹上,求的最值.

(本小题满分12分)
实数满足(其中实数满足方程为双曲线.若的必要不充分条件,求实数的取值范围.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号