某化肥厂甲、乙两个车间包装肥料,在自动包装传送带上每隔30 min抽取一包产品,称其重量,分别记录抽查数据如下:
甲:102,101,99,98,103,98,99;
乙:110,115,90,85,75,115,110.
(1)这种抽样方法是哪一种?
(2)将这两组数据用茎叶图表示;
(3)将两组数据比较,说明哪个车间的产品较稳定.
已知等差数列满足
.
(1)求的通项公式;
(2)求的前
项和
;
(3)若成等比数列,求
的值.
已知函数.
(1)求值;
(2)求的最小值正周期;
(3)求的单调递增区间.
已知函数
(1)若函数的图象切x轴于点(2,0),求a、b的值;
(2)设函数的图象上任意一点的切线斜率为k,试求
的充要条件;
(3)若函数的图象上任意不同的两点的连线的斜率小于l,求证
.
给定椭圆.称圆心在原点O,半径为
的圆是椭圆C的“准圆”.若椭圆C的一个焦点为
,其短轴上的一个端点到F的距离为
.
(1)求椭圆C的方程和其“准圆”方程;
(2)点P是椭圆C的“准圆”上的一个动点,过动点P作直线,使得
与椭圆C都只有一个交点,试判断
是否垂直?并说明理由.
已知函数, 数列
满足
.
(1)求数列的通项公式;
(2)令,若
对一切
成立,求最小正整数m.