某化肥厂甲、乙两个车间包装肥料,在自动包装传送带上每隔30 min抽取一包产品,称其重量,分别记录抽查数据如下:
甲:102,101,99,98,103,98,99;
乙:110,115,90,85,75,115,110.
(1)这种抽样方法是哪一种?
(2)将这两组数据用茎叶图表示;
(3)将两组数据比较,说明哪个车间的产品较稳定.
已知箱中装有4个白球和5个黑球,且规定:取出一个白球的2分,取出一个黑球的1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X为取出3球所得分数之和.
(Ⅰ)求X的分布列; (Ⅱ)求X的数学期望E(X).
设p:实数x满足,其中
,命题
实数x
满足
(Ⅰ)若且
为真,求实数
的取值范围;
(Ⅱ)若是
的充分不必要条件,求实数
的取值范围.
(本小题14分)已知函数.
(1)若,求曲线
在
处切线的斜率;
(2)求的单调区间;
(3)设,若对任意
,均存在
,使得
,求
的取值范围。
(本小题满分12分) 设的极小值为
,其导函数
的图像开口向下且经过点
,
.
(Ⅰ)求的解析式;(Ⅱ)方程
有唯一实数解,求
的取值范围.
(Ⅲ)若对都有
恒成立,求实数
的取值范围.
(本小题满分12分)
已知函数.
(1)若函数在(
,1)上单调递减,在(1,+∞)上单调递增,求实数a的值;
(2)是否存在正整数a,使得在(
,
)上既不是单调递增函数也不是单调递减函数?若存在,试求出a的值,若不存在,请说明理由.