函数在
时取得极小值.
(1)求实数的值;
(2)是否存在区间,使得
在该区间上的值域为
?若存在,求出
的值;若不存在,请说明理由.
对于给定数列,如果存在实常数
使得
对于任意
都成立,我们称数列
是 “线性数列”.
(1)若,
,
,数列
、
是否为“线性数列”?若是,指出它对应的实常数
,若不是,请说明理由;
(2)证明:若数列是“线性数列”,则数列
也是“线性数列”;
(3)若数列满足
,
,
为常数.求数列
前
项的和.
已知函数,
.
(1)证明:函数在区间
上为增函数,并指出函数
在区间
上的单调性.
(2)若函数的图像与直线
有两个不同的交点
,
,其中
,求
关于
的函数关系式.
(3)求的取值范围.
已知数列为等差数列,公差
,且
(1)求证:当k取不同自然数时,此方程有公共根;
(2)若方程不同的根依次为…,求证:数列
为等差数列.
已知
(1)求的值;
(2)求的值.
如图:三棱锥中,
^底面
,若底面
是边长为2的正三角形,且
与底面
所成的角为
.若
是
的中点,求:
(1)三棱锥的体积;
(2)异面直线与
所成角的大小(结果用反三角函数值表示).