设分别为椭圆
的左、右两个焦点,若椭圆C上的点A(1,
)到F1,F2两点的距离之和等于4.
(1)写出椭圆C的方程和焦点坐标;
(2)过点P(1,)的直线与椭圆交于两点D、E,若DP=PE,求直线DE的方程;
(3)过点Q(1,0)的直线与椭圆交于两点M、N,若△OMN面积取得最大,求直线MN的方程.
已知函数且
.
(1)若,求函数
在区间
上的最大值和最小值;
(2)要使函数在区间
上单调递增,求
的取值范围.
已知全集,
=
,集合
是函数
的定义域.
(1)求集合;
(2)求.
已知函数图象上一点
处的切线方程为
.
(Ⅰ)求的值;
(Ⅱ)若方程在
内有两个不等实根,求
的取值范围(其中
为自然对数的底数);
(Ⅲ)令,若
的图象与
轴交于
,
(其中
),
的中点为
,求证:
在
处的导数
.
如图,在四棱锥中,底面
是边长为
的菱形,
,
底面
,
,
为
的中点,
为
的中点.
(Ⅰ)证明:直线平面
;
(Ⅱ)求异面直线与
所成角的大小;
(Ⅲ)求点到平面
的距离.
已知函数.
(Ⅰ)求函数的最小正周期及单调递增区间;
(Ⅱ)已知,且
,求
的值.