设函数f (x)的定义域为M,具有性质P:对任意x∈M,都有f (x)+f (x+2)≤2f (x+1).
(1)若M为实数集R,是否存在函数f (x)=ax (a>0且a≠1,x∈R) 具有性质P,并说明理由;
(2)若M为自然数集N,并满足对任意x∈M,都有f (x)∈N. 记d(x)=f (x+1)-f (x).
(ⅰ) 求证:对任意x∈M,都有d(x+1)≤d(x)且d(x)≥0;
(ⅱ) 求证:存在整数0≤c≤d(1)及无穷多个正整数n,满足d(n)=c.
(本小题满分12分)已知函数.
(Ⅰ)求函数的最小值和最小正周期;
(Ⅱ)已知内角
的对边分别为
,且
,若向量
与
共线,求
的值.
(本题10分)中心在原点,焦点在x轴上的椭圆C上的点到焦点距离的最大值为3,最小值为1.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线与椭圆C相交于A,B两点(A,B不是左右顶点),且以AB为直径的圆过 椭圆C的右顶点.求证:直线l过定点,并求该定点的坐标.
(本题10分)设.若
在
存在单调增区间,求a的取值范围.
(本题8分) 已知直线被抛物线C:
截得的弦长
.
(Ⅰ)求抛物线C的方程;
(Ⅱ)若抛物线C的焦点为F,求三角形ABF的面积.
(本题8分) 设函数定义在
上,
,导函数
,
.求
的单调区间和最小值.