游客
题文

已知两盒中都有红球、白球,且球的形状、大小都相同,盒子中有个红球与个白球,盒子中有个红球与个白球().
(1)分别从中各取一个球,表示红球的个数;
①请写出随机变量的分布列,并证明等于定值;
②当为何值时,取到最小值,并求出最小值.
(2)在盒子中不放回地摸取3个球,事件:在第一次取到红球后,以后两次都取到白球,事件:在第一次取到白球后,以后两次都取到红球,若概率,求的值.

科目 数学   题型 解答题   难度 中等
知识点: 随机思想的发展
登录免费查看答案和解析
相关试题

(本小题满分12分)如图,在直三棱柱中,为的中点.

(1)求证:∥平面
(2)求证:平面

(本小题满分10分)设不等式的解集为集合,关于的不等式的解集为集合.
(1)若,求实数的取值范围;
(2)若,求实数的取值范围.

定义在上的函数,如果满足:对任意,存在常数,都有成立,则称上的有界函数,其中称为函数的上界.已知函数
(1)当时,求函数上的值域,并判断函数上是否为有界函数,请说明理由;
(2)若函数上是以4为上界的有界函数,求实数的取值范围.

已知向量,函数
(1)求的单调递增区间;
(2)若不等式都成立,求实数m的最大值.

已知点,,点在单位圆上.
(1)若为坐标原点),求的夹角;
(2)若,求点的坐标.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号