游客
题文

在一次机器人测试中,要求机器人从A出发到达B处.如图1,已知点A在O的正西方600cm处,B在O的正北方300cm处,且机器人在射线AO及其右侧(AO下方)区域的速度为20cm/秒,在射线AO的左侧(AO上方)区域的速度为10cm/秒.
(1) 分别求机器人沿A→O→B路线和沿A→B路线到达B处所用的时间(精确到秒);(3分)
(2) 若∠OCB=45°,求机器人沿A→C→B路线到达B处所用的时间(精确到秒);(3分)
(3) 如图2,作∠OAD=30°,再作BE⊥AD于E,交OA于P.试说明:从A出发到达B处,机器人沿A→P→B路线行进所用时间最短.(3分)
(参考数据:≈1.414,≈1.732,≈2.236,≈2.449)

科目 数学   题型 解答题   难度 较难
知识点: 解直角三角形
登录免费查看答案和解析
相关试题

(资阳)已知直线)过点F(0,1),与抛物线相交于B、C两点.

(1)如图1,当点C的横坐标为1时,求直线BC的解析式;
(2)在(1)的条件下,点M是直线BC上一动点,过点M作y轴的平行线,与抛物线交于点D,是否存在这样的点M,使得以M、D、O、F为顶点的四边形为平行四边形?若存在,求出点M的坐标;若不存在,请说明理由;
(3)如图2,设B(m,n)(m<0),过点E(0,﹣1)的直线l∥x轴,BR⊥l于R,CS⊥l于S,连接FR、FS.试判断△RFS的形状,并说明理由.

(宜宾)如图,在平面直角坐标系中,四边形ABCD是矩形,AD∥x轴,A(),AB=1,AD=2.
(1)直接写出B、C、D三点的坐标;
(2)将矩形ABCD向右平移m个单位,使点A、C恰好同时落在反比例函数)的图象上,得矩形A′B′C′D′.求矩形ABCD的平移距离m和反比例函数的解析式.

(宜宾)如图,CE是⊙O的直径,BD切⊙O于点D,DE∥BO,CE的延长线交BD于点A.
(1)求证:直线BC是⊙O的切线;
(2)若AE=2,tan∠DEO=,求AO的长.

(宜宾)如图,抛物线与x轴分别相交于点A(﹣2,0),B(4,0),与y轴交于点C,顶点为点P.
(1)求抛物线的解析式;
(2)动点M、N从点O同时出发,都以每秒1个单位长度的速度分别在线段OB、OC上向点B、C方向运动,过点M作x轴的垂线交BC于点F,交抛物线于点H.
①当四边形OMHN为矩形时,求点H的坐标;
②是否存在这样的点F,使△PFB为直角三角形?若存在,求出点F的坐标;若不存在,请说明理由.

(遂宁)如图,AB为⊙O的直径,直线CD切⊙O于点D,AM⊥CD于点M,BN⊥CD于N.
(1)求证:∠ADC=∠ABD;
(2)求证:AD2=AM•AB;
(3)若AM=,sin∠ABD=,求线段BN的长.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号