设函数有两个极值点
,且
.
(1)求的取值范围,并讨论
的单调性;
(2)证明:.
(本小题满分12分)已知的图像在点
处的切线与直线
平行.
(1)求a,b满足的关系式;
(2)若上恒成立,求a的取值范围;
(本小题满分12分)如图,在△ABC中,|AB|=|AC|=,|BC|=2,以B、C为焦点的椭圆恰好过AC的中点P.
(Ⅰ)求椭圆的标准方程;
(Ⅱ) 过椭圆的右顶点作直线l与圆E:(x-1)2+y2=2相交于M、N两点,试探究点M、N能将圆E分割成弧长比值为1∶3的两段弧吗?若能,求出直线l的方程;若不能,请说明理由.
如图,在四棱锥P—ABCD中,PA⊥平面ABCD,四边形ABCD为正方形,PA=AB=4, G为PD中点,E点在AB上,平面PEC⊥平面PDC.
(Ⅰ)求证:AG⊥平面PCD;
(Ⅱ)求证:AG∥平面PEC;
(Ⅲ)求点G到平面PEC的距离.
(本小题满分12分)有A、B、C、D、E五位工人参加技能竞赛培训.现分别从A、B二人在培训期间参加的若干次预赛成绩中随机抽取8次.用茎叶图表示这两组数据如下:
(Ⅰ) 现要从A、B中选派一人参加技能竞赛,从平均状况和方差的角度考虑,你认为派哪位工人参加合适?请说明理由;
(Ⅱ) 若从参加培训的5位工人中选2人参加技能竞赛,求A、B二人中至少有一人参加技能竞赛的概率.
(本小题满分12分)
已知等差数列中,
为数列
的前
项和.
(1)求数列的通项公式;
(2) 若数列的公差为正数,数列
满足
, 求数列
的前
项和