如图,在东西方向的海岸线l上有一长为1千米的码头MN,在码头西端M的正西方向30 千米处有一观察站O.某时刻测得一艘匀速直线航行的轮船位于O的北偏西30°方向,且与O相距千米的A处;经过40分钟,又测得该轮船位于O的正北方向,且与O相距20千米的B处.
(1)求该轮船航行的速度;
(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN靠岸?请说明理由.
已知下表:
x |
0 |
1 |
2 |
ax2 |
1 |
||
ax2+bx+c |
3 |
3 |
(1)求a、b、c的值,并在表内空格处填入正确的数;
(2)请你根据上面的结果判断:
①是否存在实数x,使二次三项式ax2+bx+c的值为0?若存在,求出这个实数值;若不存在,请说明理由.
②画出函数y=ax2+bx+c的图象示意图,由图象确定,当x取什么实数时,ax2+ bx+c>0?
已知二次函数y=ax2-5x+c的图象如图所示,请根据图象回答下列问题:
(1) a=_______,c=______.
(2)函数图象的对称轴是_________,顶点坐标P__________.
(3)该函数有最______值,当x=______时,y最值=________.
(4)当x_____时,y随x的增大而减小.当x_____时,y随x的增大而增大.
(5)抛物线与x轴交点坐标A_______,B________;与y轴交点C 的坐标为_______;=_________,
=________.
(6)当y>0时,x的取值范围是_________;当y<0时,x的取值范围是_________.
(7)方程ax2-5x+c=0中△的符号为________.方程ax2-5x+c=0的两根分别为_____,____.
(8)当x=6时,y______0;当x=-2时,y______0.
已知二次函数中,函数
与自变量
的部分对应值如下表:
![]() |
… |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
… |
![]() |
… |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
… |
(1)求该二次函数的关系式;
(2)当为何值时,
有最小值,最小值是多少?
(3)若,
两点都在该函数的图象上,试比较
与
的大小.
已知:o为坐标原点,∠ AOB=300 , ∠ABO=900且A(2,0)
求:过A、B、O三点的二次函数解析式
已知如图,二次函数y=ax2 +bx+c的图像过A、B、C三点
(1)观察图像写出A、B、C三点的坐标
(2)求出二次函数的解析式