随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm)获得身高数据如下:
甲班: |
158 |
168 |
162 |
168 |
163 |
170 |
182 |
179 |
171 |
179 |
乙班: |
159 |
168 |
162 |
170 |
165 |
173 |
176 |
181 |
178 |
179 |
(1)完成数据的茎叶图(以百位十位为茎,以个位为叶),并求甲班样本数据的中位数、众数;
(2)现从乙班这10名同学中随机抽取两名身高不低于173cm的同学,求身高为176cm的同学被抽中的概率。
(本小题满分12分)
设函数
(1)若函数在
内没有极值点,求
的取值范围。
(2)若对任意的,不等式
上恒成立,求实数
的取值范围。
(本小题满分12分)数列中,
(1)求的通项公式;(2)设
,求
(本小题满分10分)
已知若
,且
的图象相邻的对称轴间的距离等于
(1)求的值;(2)在
中,
分别是角A,B,C的对边,
,且
,求
的最小值。
如图所示,平面ABC,CE//PA,PA=2CE=2。
(1)求证:平面平面APB;(2)求二面角A—BE—P的正弦值。
(本题满分18分,第(1)小题6分,第(2)小题6分,第(3)小题6分)
若数列满足:
是常数),则称数列
为二阶线性递推数列,且定义方程
为数列
的特征方程,方程的根称为特征根; 数列
的通项公式
均可用特征根求得:
①若方程有两相异实根
,则数列通项可以写成
,(其中
是待定常数);
②若方程有两相同实根
,则数列通项可以写成
,(其中
是待定常数);
再利用可求得
,进而求得
.
根据上述结论求下列问题:
(1)当,
(
)时,求数列
的通项公式;
(2)当,
(
)时,求数列
的通项公式;
(3)当,
(
)时,记
,若
能被数
整除,求所有满足条件的正整数
的取值集合.