将一颗质地均匀的正方体骰子(六个面的点数分别为1、2、3、4、5、6)先后抛两次,将得到的点数分别记为a,b.
(1)求满足条件a+b≥9的概率;
(2)求直线ax+by+5=0与x2+y2=1相切的概率
(3)将a,b,5的值分别作为三条线段的长,求这三条线段能围成等腰三角形的概率。
如图所示,在矩形ABCD中,AB=4,AD=2,E是CD的中点,O为AE的中点,以AE为折痕,将△ADE向上折起,使D到P,且PC=PB
(1)求证:PO⊥面ABCE;
(2)求AC与面PAB所成角的正弦值.
(本小题满分12分)某地决定新建A,B,C三类工程,A,B,C三类工程所含项目的个数分别占总项目数的(总项目数足够多),现有3名工人独立地从中任选一个项目参与建设
(Ⅰ)求他们选择的项目所属工程类别相同的概率;
(Ⅱ)记为3人中选择的项目属于B类工程或C类工程的人数,求
的分布列及数学期望.
(本小题满分12分)已知函数>0,
>0,
<
的图象与
轴的交点为(0,1),它在
轴右侧的第一个最高点和第一个最低点的坐标分别为
和
(1)写出的解析式及
的值;(2)若锐角
满足
,求
的值.
![]() |
(本小题满分10分)选修4-5:不等式选讲已知对于任意非零实数,不等式
恒成立,求实数
的取值范围。
请考生在第22、23两题中任选一题作答,如果多做,则按所做的第一题记分。
(本小题满分10分)选修4-1:几何证明选讲
在中,AB=AC,过点A的直线与其外接圆交
于点P,交BC延长线于点D。
(1)求证: ;
(2)若AC=3,求的值。