某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:
单价![]() |
8 |
8.2 |
8.4 |
8.6 |
8.8 |
9 |
销量![]() |
90 |
84 |
83 |
80 |
75 |
68 |
(1)根据上表可得回归直线方程中的
,据此模型预报单价为10元时的销量为多少件?
(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入成本)
某市为准备参加省中学生运动会,对本市甲、乙两个田径队的所有跳高运动员进行了测试,用茎叶图表示出甲、乙两队运动员本次测试的跳高成绩(单位:cm,且均为整数),同时对全体运动员的成绩绘制了频率分布直方图.跳高成绩在185cm以上(包括185cm)定义为“优秀”,由于某些原因,茎叶图中乙队的部分数据丢失,但已知所有运动员中成绩在190cm以上(包括190cm)的只有两个人,且均在甲队.
(Ⅰ)求甲、乙两队运动员的总人数a及乙队中成绩在[160,170)(单位:cm)内的运动员人数b;
(Ⅱ)在甲、乙两队所有成绩在180cm以上的运动员中随机选取2人,已知至少有1人成绩为“优秀”,求两人成绩均“优秀”的概率;
(Ⅲ)在甲、乙两队中所有的成绩为“优秀”的运动员中随机选取2人参加省中学生运动会正式比赛,求所选取运动员中来自甲队的人数X的分布列及期望.
在直角坐标系xOy中,圆C的参数方程为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系.
(Ⅰ)求圈C的极坐标方程;
(Ⅱ)直线的极坐标方程是
,射线
与圆C的交点为O,P与直线
的交点为Q,求线段PQ的长.
如图,在直线三棱柱ABC—A1B1C1中,AB=AC=1,∠BAC=90°,异面直线A1B与B1C1所成的角为60°.
(Ⅰ)求证:AC⊥A1B;
(Ⅱ)设D是BB1的中点,求DC1与平面A1BC1所成角的正弦值.
设数列{an}是等差数列,数列{bn}的前n项和Sn满足且
(Ⅰ)求数列{an}和{bn}的通项公式:
(Ⅱ)设Tn为数列{Sn}的前n项和,求Tn.
已知数列的前
项和
(
为正整数)。
(1) 令,求证:数列
是等差数列,并求数列
的通项公式;
(2) 令,
,求使得
成立的最小正整数
,并证明你的结论.