已知函数.
(1)若是函数,y=F(x)的极值点,求实数a的值;
(2)若函数y=F(x)(x∈(0,3])的图象上任意一点处切线的斜率恒成立,求实数a的取值范围;
(3)若函数y=f(x)在[1,2]上有两个零点,求实数a的取值范围.
已知函数.
(1)当时,指出
的单调递减区间和奇偶性(不需说明理由);
(2)当时,求函数
的零点;
(3)若对任何不等式
恒成立,求实数
的取值范围。
某企业生产某种商品吨,此时所需生产费用为(
)万元,当出售这种商品时,每吨价格为
万元,这里
(
为常数,
)
(1)为了使这种商品的生产费用平均每吨最低,那么这种商品的产量应为多少吨?
(2)如果生产出来的商品能全部卖完,当产量是120吨时企业利润最大,此时出售价格是每吨160万元,求的值.
已知以角为钝角的的三角形
内角
的对边分别为
、
、
,
,且
与
垂直.
(1)求角的大小;
(2)求的取值范围
在直三棱柱ABC-A1B1C1中,∠ABC=90°,AB=BC=1.
(1)求异面直线B1C1与AC所成角的大小;
(2)若该直三棱柱ABC-A1B1C1的体积为,求点A到平面A1BC的距离.
已知函数
(1)求函数的值域,并写出函数
的单调递增区间;
(2)若,且
,计算
的值.