游客
题文

如图,在直三棱柱ABC﹣A1B1C1(侧棱和底面垂直的棱柱)中,平面A1BC⊥侧面A1ABB1,AB=BC=AA1=3,线段AC、A1B上分别有一点E、F且满足2AE=EC,2BF=FA1
(1)求证:AB⊥BC;
(2)求点E到直线A1B的距离;
(3)求二面角F﹣BE﹣C的平面角的余弦值.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

已知四棱锥PABCD的正视图是一个底边长为4,腰长为3的等腰三角形,如图分别是四棱锥PABCD的侧视图和俯视图.

(1)求证:ADPC
(2)求四棱锥PABCD的侧面PAB的面积.

设角ABC为△ABC的三个内角.
(1)设f(A)=sin A+2sin ,当AA0时,f(A)取极大值f(A0),试求A0f(A0)的值;
(2)当AA0时,·=-1,求BC边长的最小值.

如图,在几何体ABCDE中,ABAD=2,ABADAE⊥平面ABDM为线段BD的中点,MCAE,且AEMC.

(1)求证:平面BCD⊥平面CDE
(2)若N为线段DE的中点,求证:平面AMN∥平面BEC.

已知m=(2cos x+2sin x,1),n=(cos x,-y),且mn.
(1)将y表示为x的函数f(x),并求f(x)的单调递增区间;
(2)已知abc分别为△ABC的三个内角ABC对应的边长,若f=3,且a=2,bc=4,求△ABC的面积.

某校从高一年级学生中随机抽取40名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),…,[90,100]后得到如图所示的频率分布直方图.

(1)求图中实数a的值;
(2)若该校高一年级共有学生640人,试估计该校高一年级期中考试数学成绩不低于60分的人数;
(3)若从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取2名学生,求这2名学生的数学成绩之差的绝对值不大于10的概率.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号