如图,边长为2的正方形ACDE所在的平面与平面ABC垂直,AD与CE的交点为M,,且AC=BC.
(1)求证:平面EBC;
(2)求二面角的大小.
天水市第一次联考后,某校对甲、乙两个文科班的数学考试成绩进行分析,
规定:大于或等于120分为优秀,120分以下为非优秀.统计成绩后,
得到如下的列联表,且已知在甲、乙两个文科班全部110人中随机抽取1人为优秀的概率为
.
优秀 |
非优秀 |
合计 |
|
甲班 |
10 |
||
乙班 |
30 |
||
合计 |
110 |
(1)请完成上面的列联表;
(2)根据列联表的数据,若按99.9%的可靠性要求,能否认为“成绩与班级有关系”;
(3)若按下面的方法从甲班优秀的学生中抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号。试求抽到9号或10号的概率。
参考公式与临界值表:。
![]() |
0.100 |
0.050 |
0.025 |
0.010 |
0.001 |
![]() |
2.706 |
3.841 |
5.024 |
6.635 |
10.828 |
如图,甲船以每小时30海里的速度向正北方向航行,
乙船按固定方向匀速直线航行.当甲船位于A1处时,乙船位于甲船的北偏西105°方向的B1处,此时两船相距20海里.当甲船航行20分钟到达A2处时,乙船航行到甲船的北偏西120°方向的B2处,此时两船相距10海里,问乙船每小时航行多少海里?
从0,1,2, ,10中挑选若干个不同的数字填满图中每一个圆圈称为一种“填法”,若各条线段相连的两个圆圈内的数字之差的绝对值各不相同,则称这样的填法为“完美填法”。
试问:对图1和图2是否存在完美填法?若存在,请给出一种完美填法;若不存在,请说明理由。
设证明
。
设满足
数列
是公差为
,首项
的等差数列; 数列
是公比为
首项
的等比数列,求证:
。