如图,边长为2的正方形ACDE所在的平面与平面ABC垂直,AD与CE的交点为M,,且AC=BC.
(1)求证:平面EBC;
(2)求二面角的大小.
设.
(1)求的最小正周期;
(2)若函数y=f(x)与的图象关于直线x=1对称,求当
时y=g(x)的最大值.
(本小题满分10分)【选修4-5:不等式选讲】
已知函数.
(Ⅰ)求的解集;
(Ⅱ)设函数,
,若
对任意的
都成立,求实数k的取值范围.
(本小题满分10分)【选修4-4:坐标系与参数方程】
已知曲线C的极坐标方程为,以极点为坐标原点,极轴为x轴正半轴建立平面直角坐标系,直线
的参数方程为
(t为参数).
(Ⅰ)把曲线C的极坐标方程化为直角坐标方程,把直线的参数方程化为普通方程;
(Ⅱ)求直线被曲线C截得的线段AB的长.
(本小题满分10分)【选修4-1:几何证明选讲】
如图,已知直线PA与圆O相切于点A,经过点O的割线PBC交圆O于点B和点C,的平分线分别交AB,AC于点D和E.
(Ⅰ)证明:;
(Ⅱ)若,求
的值.
(本小题满分12分)在平面直角坐标系中,已知圆
和圆
.
(Ⅰ)若直线过点
,且被圆
截得的弦长为
,求直线
的方程;
(Ⅱ)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线和
,它们分别与圆
和圆
相交,且直线
被圆
截得的弦长与直线
被圆
截得的弦长相等,试求所有条件的点P的坐标.