如图,边长为2的正方形ACDE所在的平面与平面ABC垂直,AD与CE的交点为M,,且AC=BC.
(1)求证:平面EBC;
(2)求二面角的大小.
已知函数,其中常数
.
(1)求的单调增区间与单调减区间;
(2)若存在极值且有唯一零点
,求
的取值范围及不超过
的最大整数
.
(本小题满分13分)已知椭圆的离心率为
,椭圆的短轴端点与双曲线
的焦点重合,过点
且不垂直于
轴的直线
与椭圆
相交于
两点.
(1)求椭圆的方程;
(2)求的取值范围.
(本小题满分14分)已知函数的导函数.
(1)若,不等式
恒成立,求a的取值范围;
(2)解关于x的方程;
(3)设函数,求
时的最小值.
(本小题满分13分)已知椭圆C:(a>b>0)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.
(1)求椭圆C的标准方程.
(2)设F为椭圆C的左焦点,T为直线x=-3上任意一点,过F作TF的垂线交椭圆C于点P,Q.
①证明:OT平分线段PQ(其中O为坐标原点);
②当最小时,求点T的坐标.
(本小题满分12分)如图,四棱锥中,PA⊥平面ABCD,∠ABC=∠BAD=90°,AD=2PA=2AB=2BC=2.
(1)求三棱锥的外接球的体积;
(2)求二面角与二面角
的正弦值之比.