已知甲盒内有大小相同的1个红球和3个黑球, 乙盒内有大小相同的2个红球和4个黑球,现从甲、乙两个盒内各任取2个球.
(1)求取出的4个球均为黑球的概率;
(2)求取出的4个球中恰有1个红球的概率;
(3)设为取出的4个球中红球的个数,求
的分布列和数学期望
已知等比数列的公比大于1,
是数列
的前n项和,
,且
,
,
依次成等差数列,数列
满足:
,
)
(1) 求数列、
的通项公式;
(2)求数列的前n项和为
已知函数的最小正周期为
(1) 若,求函数
的最小值;
(2) 在△ABC中,若,且
,求
的值
已知函数,其中
为常数,
为自然对数的底数.
(Ⅰ)当时,求
的单调区间;
(Ⅱ)若在区间
上的最大值为2,求
的值.
.已知椭圆C:的离心率为
,椭圆C上任意一点到椭圆两个焦点的距离之和为6.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线:
与椭圆C交于
,
两点,点
,且
,求直线
的方程.
某班主任对班级22名学生进行了作业量多少的调查,数据如下:在喜欢玩电脑游戏的12中,有9人认为作业多,3人认为作业不多;在不喜欢玩电脑游戏的10人中,有4人认为作业多,6人认为作业不多.
(Ⅰ)根据以上数据建立一个列联表;
(Ⅱ)试问喜欢电脑游戏与认为作业多少是否有关系?
(可能用到的公式:,可能用到数据:
,
,
,
.)