游客
题文

已知,在△ABC中,AB=AC.过A点的直线a从与边AC重合的位置开始绕点A按顺时针方向旋转角θ,直线a交BC边于点P(点P不与点B、点C重合),△BMN的边MN始终在直线a上(点M在点N的上方),且BM=BN,连接CN.
(1)当∠BAC=∠MBN=90°时,
①如图a,当θ=45°时,∠ANC的度数为  
②如图b,当θ≠45°时,①中的结论是否发生变化?说明理由;
(2)如图c,当∠BAC=∠MBN≠90°时,请直接写出∠ANC与∠BAC之间的数量关系,不必证明.
 

科目 数学   题型 解答题   难度 较难
知识点: 三角形的五心
登录免费查看答案和解析
相关试题

(1) 
(2)
(3)
(4)
(5)
(6)

如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,点E是DC的中点,过点E作DC的垂线交AB于点P,交CB的延长线于点M.点F在线段ME上,且满足CF=AD,MF=MA.

(1)若∠MFC=120°,求证:AM=2MB;
(2)求证:∠MPB=90°-∠FCM.

若△ABC的三边满足条件:a2+b2+c2+338=10a+24b+26c,试判断△ABC的形状.

如图,在梯形ABCD中,AD∥BC,AB=DC=AD,BC=AC,求该梯形各内角的度数.

如图,△ABC中,AD是∠BAC的平分线,DE⊥AB,DF⊥AC, E、F为垂足,连接EF交AD于G,试判断AD与EF垂直吗?并说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号