已知函数,若存在
,使
,则称
是函数
的一个不动点.设二次函数
.
(1)对任意实数,函数
恒有两个相异的不动点,求
的取值范围;
(2)在(1)的条件下,若的图象上
两点的横坐标是
的不动点,且
两点关于直线
对称,求
的最小值.
已知等差数列的公差
大于0,且
、
是方程
的两根.数列
的前
项和为
,满足
(Ⅰ)求数列,
的通项公式;
(Ⅱ)设数列的前
项和为
,记
.若
为数列
中的最大项,求实数
的取值范围.
某公司向市场投放三种新型产品,经调查发现第一种产品受欢迎的概率为,第二、第三种产品受欢迎的概率分别为
,且不同种产品是否受欢迎相互独立.记
为公司向市场投放三种新型产品受欢迎的数量,其分布列为
![]() |
(Ⅰ)求该公司至少有一种产品受欢迎的概率;
(Ⅱ)求的值;
(Ⅲ)求数学期望.
如图,四棱锥的底面
是矩形,
,且侧面
是正三角形,平面
平面
,
(Ⅰ)求证:;
(Ⅱ)在棱上是否存在一点
,使得二面角
的大小为45°.若存在,试求
的值,若不存在,请说明理由.
已知函数.
(1)若,求
的值;
(2)设△三内角
所对边分别为
且
,求
在
上的值域.
设对于任意实数x,不等式恒成立.
(1)求m的取值范围;
(2)当m取最大值时,解关于x的不等式: