设函数
(1) 当若在
存在
,使得不等式
成立,求
的最小值.
(2) 若在
上是单调函数,求
的取值范围.
(参考数据)
某工厂有216名工人,现接受了生产1000台GH型高科技产品的总任务。已知每台GH型产品由4个G型装置和3个H型装置配套组成,每个工人每小时能加工6个G型装置或3个H型装置。现将工人分成两组同时开始加工,每组分别加工一种装置(完成自己的任务后不再支援另一组)。设加工G型装置的工人有x人,他们加工完G型装置所需时间为g(x),其余工人加工完H型装置所需时间为h(x)(单位:小时,可不为整数).
(1)写出,
的解析式;
(2)写出这216名工人完成总任务的时间的解析式;
(3)应怎样分组,才能使完成总任务用的时间最少?
已知向量.
(1)当时,求
的值;
(2)设函数,已知在△ ABC中,内角A、B、C的对边分别为
,若
,求
(
)的取值范围.
已知函数.
(1)若函数的图像关于直线
对称,求a的最小值;
(2)若存在使
成立,求实数m的取值范围。
已知命题:函数
的值域为
,命题
:方程
在
上有解,若命题“
或
”是假命题,求实数
的取值范围.
已知函数(
为常数,
为自然对数的底)
(1)当时,求
的单调区间;
(2)若函数在
上无零点,求
的最小值;
(3)若对任意的,在
上存在两个不同的
使得
成立,求
的取值范围.