游客
题文

在体育局的策划下,市体育馆将组织明星篮球赛,为此体育局推出两种购票方案(设购票张数为x,购票总价为y):
方案一:提供8000元赞助后,每张票的票价为50元;
方案二:票价按图中的折线OAB所表示的函数关系确定.
(1)若购买120张票时,按方案一和方案二分别应付的购票款是多少?
(2)求方案二中y与x的函数关系式;
(3)至少买多少张票时选择方案一比较合算?

科目 数学   题型 解答题   难度 中等
知识点: 一次函数的最值
登录免费查看答案和解析
相关试题

用10个球设计一个摸球游戏,使得:
(1)摸到红球的机会是
(2)摸到红球的机会是,摸到黄球的机会是
(3)你还能设计一个符合下列条件的游戏吗?为什么?
摸到红球的机会是,摸到黄球的机会是,摸到绿球的机会是

用剪刀将形状如图1所示的矩形纸片ABCD沿着直线CM剪成两部分,其中M为AD的中点.用这两部分纸片可以拼成一些新图形,例如图2中的Rt△BCE就是拼成的一个图形. 用这两部分纸片除了可以拼成图2中的Rt△BCE外,还可以拼成一些四边形,请你试一试,把拼成的四边形分别画在图3、图4的虚框内。

如图,已知:AB⊥BD,ED⊥BD,AB=CD,BC=DE,那么AC与CE有什么关系?写出你的猜想并说明理由。

观察下面的式子:




……
(1)猜一猜等于什么?
(1)猜一猜等于什么?
(2)写出的值.

如图,直线AC∥DF,C、E分别在AB、DF上,小华想知道∠ACE和∠DEC是否互补,但是他有没有带量角器,只带了一副三角板,于是他想了这样一个办法:首先连结CF,再找出CF的中点O,然后连结EO并延长EO和直线AB相交于点B,经过测量,他发现EO=BO,因此他得出结论:∠ACE和∠DEC互补,而且他还发现BC=EF。

以下是他的想法,请你填上根据。小华是这样想的:
因为CF和BE相交于点O,
根据得出∠COB=∠EOF;
而O是CF的中点,那么CO=FO,又已知 EO=BO,
根据得出△COB≌△FOE,
根据得出BC=EF,
根据得出∠BCO=∠F,
既然∠BCO=∠F,根据出AB∥DF,
既然AB∥DF,根据得出∠ACE和∠DEC互补.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号