如图①, 在 中, 以下是小亮探究 与 之间关系的方法:
,
,
根据你掌握的三角函数知识 . 在图②的锐角 中, 探究 、 、 之间的关系, 并写出探究过程 .
如图,在平面直角坐标系中,抛物线 经过点 和点 ,与 轴的另一个交点为 ,与 轴交于点 ,作直线 .
(1)①求抛物线的函数表达式;
②直接写出直线 的函数表达式;
(2)点 是直线 下方的抛物线上一点,连接 交 于点 ,连接 , 的面积记为 , 的面积记为 ,当 时,求点 的坐标;
(3)点 为抛物线的顶点,将抛物线图象中 轴下方的部分沿 轴向上翻折,与抛物线剩下的部分组成新的曲线记为 ,点 的对应点为 ,点 的对应点为 ,将曲线 沿 轴向下平移 个单位长度 .曲线 与直线 的公共点中,选两个公共点记作点 和点 ,若四边形 是平行四边形,直接写出点 的坐标.
【特例感知】
(1)如图1, 和 是等腰直角三角形, ,点 在 上,点 在 的延长线上,连接 ,线段 与 的数量关系是______;
【类比迁移】
(2)如图2,将图1中的 绕着点 顺时针旋转 ,那么第(1)问的结论是否仍然成立?如果成立,证明你的结论;如果不成立,说明理由.
【方法运用】
(3)如图3,若 ,点 是线段 外一动点, ,连接 .
①若将 绕点 逆时针旋转 得到 ,连接 ,则 的最大值是______;
②若以 为斜边作 ( 三点按顺时针排列), ,连接 ,当 时,直接写出 的值.
如图,在平面直角坐标系中,一次函数 的图象与 轴交于点 ,与 轴交于点 ,与直线 交于点.
(1)求直线 的函数表达式;
(2)过点 作 轴于点 ,将 沿射线 平移得到的三角形记为 ,点 的对应点分别为 ,若 与 重叠部分的面积为 ,平移的距离 ,当点 与点 重合时停止运动.
①若直线 交直线 于点 ,则线段 的长为______(用含有 的代数式表示);
②当 时, 与 的关系式为______;
③当 时, 的值为______.
如图,四边形 内接于 , 是 的直径, 的延长线交于点 ,延长 交 于点 , .
(1)求证: 是 的切线;
(2)连接 , , , 的长为______.
如图,用一根 厘米的铁丝制作一个“日”字型框架 ,铁丝恰好全部用完.
(1)若所围成的矩形框架 的面积为 平方厘米,则 的长为多少厘米?
(2)矩形框架 面积的最大值为______平方厘米.