在平面内,不等式
确定的平面区域为
,不等式组
确定的平面区域为
.
(1)定义横、纵坐标为整数的点为“整点”.在区域任取3个整点,求这些整点中恰有2个整点在区域
的概率;
(2)在区域每次任取
个点,连续取
次,得到
个点,记这
个点在区域
的个数为
,求
的分布列和数学期望.
(本小题满分12分)
(1)(本小题满分5分)选修4-2:矩阵与变换。已知矩阵,A的一个特征值
,属于λ的特征向量是
,求矩阵A与其逆矩阵.
(2) (本小题满分7分)选修4—4:坐标系与参数方程
已知直线的极坐标方程是
.以极点为平面直角坐标系的原点,极轴为
轴的正半轴,建立平面直角坐标系,在曲线
上求一点,使它到直线
的距离最小,并求出该点坐标和最小距离.
(本题满分12分)为了防止受到核污染的产品影响我国民众的身体健康,某地要求产品在进入市场前必须进行两轮核辐射检测,只有两轮都合格才能进行销售,否则不能销售.已知某产品第一轮检测不合格的概率为,第二轮检测不合格的概率为
,每轮检测结果只有“合格”、“不
合格”两种,且两轮检测是否合格相互没有影响.
(Ⅰ)求该产品不能销售的概率;
(Ⅱ)如果产品可以销售,则每件产品可获利40元;如果产品不能销售,则每件产品亏损
80元(即获利元).已知一箱中有产品4件,记一箱产品获利X元,求EX.
某市为了了解今年高中毕业生的体能状况,从本市某校高中毕业班中抽取一个班进行铅球测试,成绩在8.0米(精确到0.1米)以上的为合格.把所得数据进行整理后,分成6组画出频率分布直方图的一部分(如图),已知从左到右前5个小组的频率分别为0.04,0.10,0.14,0.28,0.30.第6小组的频数是7.
( I ) 求这次铅球测试成绩合格的人数;
(II)用此次测试结果估计全市毕业生的情况.若从今年的高中毕业生中随机抽取两名,记表示两人中成绩不合格的人数,求
的数学期望和方差.
下表是某小卖部6天卖出热茶的杯数与当天气温的对比表:
气温/℃ |
26 |
18 |
13 |
10 |
4 |
-1 |
杯数 |
20 |
24 |
34 |
38 |
50 |
64 |
(Ⅰ)将上表中的数据制成散点图,并判断散点图中温度与饮料杯数是否成线性相关关系?
(Ⅱ)如果把上述关系近似成线性关系的话,经计算得回归方程= bx+ a的系数b= -1.65,请求出回归直线方程来近似地表示这种线性关系.(a的值精确到0.1)
(Ⅲ)如果某天的气温是-5℃时,预测这天小卖部卖出热茶的杯数.
已知函数,
,设集合
{
,
与
的值中至少有一个为正数}.
(Ⅰ)试判断实数是否在集合
中,并给出理由;
(Ⅱ)求集合.